/*
Logistic Regression 逻辑回归
薪金与房屋补贴的关系。
假设月薪是12150、那预测他会不会同时申请房屋补贴。
逻辑回归用来预测0与1、是与否的模型。
目前分類:R (20)
- Oct 12 Wed 2016 11:17
R tutorial 20 - Logistic Regression (3)
- Oct 12 Wed 2016 10:06
R tutorial 19 - handle error in Logistic Regression (2)
glm会显示数据有以下问题
Warning messages:
1: glm.fit: algorithm did not converge
2: glm.fit: fitted probabilities numerically 0 or 1 occurred
这是因为使用glm要计算数据的方差、假如数据是平滑的直线、经过迭代後、仍然无法分辨数据、就会有这个错误。
- Oct 11 Tue 2016 23:22
R tutorial 18 - Logistic Regression (1)
/*
Logistic Regression 逻辑回归
薪金与房屋补贴的关系。
假设月薪是17150,那预测他会不会同时申请房屋补贴。
逻辑回归用来预测0与1、是与否的模型。
- Oct 11 Tue 2016 16:09
R tutorial 17 - In-built library
- Oct 11 Tue 2016 14:13
R tutorial 16 - Multiple Regression (1)
/*
Multiple Regression 多元回归分析
薪金、花红、褔利与津贴之间的关系。
假设花红是3313.67、褔利是3000、津贴是1050。
经过预测、薪金将会是12256.66。
- Oct 11 Tue 2016 12:51
R tutorial 15 - Simple linear regression (2)
/*
Simple linear regression 简单回归分析
假设花红是3250、经过预测月薪将是10060.22元。
图中红色就是预期花红和月薪的关系。
*/
- Oct 11 Tue 2016 12:43
R tutorial 14 - Mean, Trim, NA Option, Median
/*
平均数、排除数值、数列中有NA值、中位数。
Mean、Trim、NA Option、Median。
*/
userName <- c("Lam Wei Wei", "Zheng Da Shi", "Lin Da You", "Fei Gu Man", "Chen Kuang", "Wong wei yun")
- Oct 10 Mon 2016 23:28
R tutorial 13 - cbind
/*
使用cbind在表中添加数据。
*/
userName <- c("Lam Wei Wei", "Zheng Da Shi", "Lin Da You", "Fei Gu Man", "Chen Kuang", "Wong wei yun")
salary <- c(8500, 9800, 12500, 15000, 8700, 7500)
- Oct 10 Mon 2016 20:44
R tutorial 12 - Simple linear regression (1)
/*
Simple linear regression 简单回归分析
Bar Chart、条形统计图
月薪和花红的关系。
*/
- Oct 10 Mon 2016 10:52
R tutorial 11 - Scatterplots
- Oct 10 Mon 2016 10:42
R tutorial 10 - Boxplots
- Oct 10 Mon 2016 10:38
R tutorial 09 - Advance Data.frame
1. data.frame
userName <- c("Lam Wei Wei", "Zheng Da Shi", "Lin Da You", "Fei Gu Man", "Chen Kuang", "Wong wei yun")
salary <- c(8500, 9800, 12500, 15000, 8700, 7500)
jobPosition <- c("Staff", "Manger", "BOSS", "CEO", "Staff", "Staff")
bonus <- c(2300, 1350, 3285, 1035, 3285, 1035)
- Oct 10 Mon 2016 10:23
R tutorial 08 - Advance Matrices
1. Matrices
userName <- c("Lam Wei Wei", "Zheng Da Shi", "Lin Da You", "Fei Gu Man", "Chen Kuang", "Wong wei yun")
salary <- c(8500, 9800, 12500, 15000, 8700, 7500)
jobPosition <- c("Staff", "Manger", "BOSS", "CEO", "Staff", "Staff")
bonus <- c(2300, 1350, 3285, 1035, 3285, 1035)
- Oct 10 Mon 2016 09:42
R tutorial 07 - Pie Charts
1. Pie Charts
userName <- c("Lam Wei Wei", "Zheng Da Shi", "Lin Da You", "Fei Gu Man", "Chen Kuang", "Wong wei yun")
salary <- c(8500, 9800, 12500, 15000, 8700, 7500)
jobPosition <- c("Staff", "Manger", "BOSS", "CEO", "Staff", "Staff")
bonus <- c(2300, 1350, 3285, 1035, 3285, 1035)
- Oct 10 Mon 2016 01:04
R tutorial 06 - Dot chart
1. Dot chart
userName <- c("Lam Wei Wei", "Zheng Da Shi", "Lin Da You", "Fei Gu Man", "Chen Kuang", "Wong wei yun")
salary <- c(8500, 9800, 12500, 15000, 8700, 7500)
jobPosition <- c("Staff", "Manger", "BOSS", "CEO", "Staff", "Staff")
bonus <- c(2300, 1350, 3285, 1035, 3285, 1035)
- Oct 10 Mon 2016 00:11
R tutorial 05 - Table & Bar Plot (2)
userName <- c("Lam Wei Wei", "Zheng Da Shi", "Lin Da You", "Fei Gu Man")
salary <- c(8500, 9800, 12500, 15000)
jobPosition <- c("Staff", "Manger", "BOSS", "CEO")
bonus <- c(2300, 1350, 3285, 1035)
- Oct 09 Sun 2016 23:02
R tutorial 04 - Table & Bar Plot
1. Table
Table是自动把数据组成一个表格。
{ A, A, A, B, B, C}
数组共有3个A、2个B、1个C
source <- c("A", "A", "B", "A", "C", "B")
- Oct 09 Sun 2016 22:11
R tutorial 03 - Function
# 林薇薇 鄭大世 林大佑 費顧漫
# 8500 9800 12500 15000
# 採購員 主任 經理 總裁
# 2300 1350 3285 1035
userName <- c("Lam Wei Wei", "Zheng Da Shi", "Lin Da You", "Fei Gu Man")
- Oct 09 Sun 2016 21:07
R tutorial 02 - Operators
# 林薇薇 鄭大世 林大佑 費顧漫
# 8500 9800 12500 15000
# 採購員 主任 經理 總裁
# 2300 1350 3285 1035
userName <- c("Lam Wei Wei", "Zheng Da Shi", "Lin Da You", "Fei Gu Man")
- Oct 09 Sun 2016 17:44
R tutorial 01 - Data type
# 林薇薇 鄭大世 林大佑 費顧漫
# 8500 9800 12500 15000
# 採購員 主任 經理 總裁
userName <- c("Lam Wei Wei", "Zheng Da Shi", "Lin Da You", "Fei Gu Man")
salary <- c(8500, 9800, 12500, 15000)